CLINICAL PICTURE:

22 month old female patient diagnosed clinically with Assymetric Diskentic Cerebral Palsy (right worse than left) with Hypotonia and Orofacial Dyskinesia.

RADIOLOGICAL FINDINGS:

RADIOLOGICAL FINDINGS:

Figure 1. Precontrast MRI, T1 images (Axial view) showing bilateral fairly symmetrical, well circumscribed hypointensity involving the lateral parts of the putamen and the globus pallidus indicating cystic necrosis of these parts, most probably due to perinatal brain hypoxia/ischemia. The bilateral cysts is isointense with the CSF in the T1 images.
Figure 2. Precontrast MRI, T1 images (Coronal view) showing bilateral, fairly symmetrical, well circumscribed hypointensity involving the lateral parts of the putamen and the globus pallidus indicating cystic necrosis of these parts, most probably due to perinatal brain hypoxia/ischemia. The bilateral cysts is isointense with the CSF in the T1 images.

Figure 3. MRI T2 images. The bilateral basal ganglionic cystic necrosis is hyperintense and fairly
symmetrical. Again the basal ganglionic cysts are isointense with the CSF.

Figure 4. FLAIR images showed that the basal ganglionic cysts are not isointense with the CSF, which means that the fluid inside the basal ganglionic cysts is different from CSF.

- **Comment of cerebral palsy**

Cerebral palsy (CP) has been used as an umbrella term for varying disorders. Loosely translated, CP means “brain paralysis.” Generally, it refers to motor or postural abnormalities that are noted during early development. These anomalies are thought to be associated with prenatal, perinatal, or postnatal events of varying etiologies (often multifactorial in nature). (Click for more details)

CP generally is considered to be a static encephalopathy that is nonprogressive in nature. However, the clinical expression of CP is subject to change as children and their developing nervous systems mature. Despite advances in neonatal care, CP remains a significant clinical problem.

Many patients with the diagnosis of CP have normal or above average intelligence. Expression of intellectual capacity may be limited by impairment in communication due to oromotor, fine motor, and gross motor difficulties. Without appropriate compensation, these difficulties have the potential to impair the ability to fully integrate academically and socially. Complications associated with CP include cognitive difficulties, GI dysfunction, dental caries, sensory deficits, and a seizure disorder. A greater understanding of CP and the realization that patients with CP have significant potential to be unmasked allows medical professionals to approach CP in a multidisciplinary manner to maximize rehabilitative efforts.

Pathophysiology: CP is defined as a persistent disorder of movement and posture caused by nonprogressive defects or lesions of the immature brain. A clinical presentation of CP may result from an underlying structural abnormality of the brain; early prenatal, perinatal, or postnatal injury due to vascular insufficiency; toxins or infections; or the pathophysiologic risks of prematurity. Evidence suggests that prenatal factors result in 70-80% of cases of CP. In most cases, the exact cause is unknown but is most likely multifactorial. During the prenatal period,
abnormal development may occur at any time (whether due to a genetic abnormality, toxic or infectious etiology, or vascular insufficiency).

Major events in human brain development and their peak times of occurrence include the following:

1. **Primary neurulation** - Week 3-4 wk of gestation
2. **Prosencephalic development** - Months 2-3 of gestation
3. **Neuronal proliferation** - Months 3-4 of gestation
4. **Organization** - Month 5 of gestation to years postnatal
5. **Myelination** - Birth to years postnatal

Given the complexity of the brain and its vulnerability during many stages of development, it is subject to injury at several times. Cerebral ischemia before the 20th week of gestation can result in a neuronal migration deficit; between the 26th and 34th weeks, periventricular leukomalacia; and between the 34th and 40th weeks, focal or multifocal cerebral injury.

Brain injury due to vascular insufficiency depends on various factors at the time of injury, including vascular distribution to the brain, efficiency of cerebral blood flow and regulation of blood flow, and biochemical response of brain tissue to decreased oxygenation.

The physical stress on the premature infant as well as the immaturity of the brain and cerebral vasculature likely explain why prematurity is a significant risk factor for CP. Prior to term, the distribution of fetal circulation to the brain results in the tendency for hypoperfusion to the periventricular white matter. Hypoperfusion can result in germinal matrix hemorrhages or periventricular leukomalacia, which is associated with a spastic diplegic presentation.

At term, when circulation to the brain most resembles adult cerebral circulation, hypoperfusion mostly targets injury to the watershed areas of the cortex (eg, end zones of the major cerebral arteries), resulting in a spastic quadriplegic phenotype. The basal ganglia also can be affected, resulting in an extrapyramidal (eg, choreoathetoid or dystonic) presentation. Vascular injuries at term tend to occur most often in the distribution of the middle cerebral artery, resulting in a spastic hemiplegic phenotype.

No set rule exists as to where vascular injury can occur, and injury may occur at more than 1 stage of fetal brain development. The autoregulation of cerebral blood flow in the human newborn is sensitive to perinatal asphyxia, which can result in vasoparalysis and cerebral hyperemia. The extent of injury is thought to be related to regional vascular and metabolic factors and the regional distribution of excitatory synapses.

Between weeks 26 and 34 of gestation, the periventricular white matter areas near the lateral ventricles are most susceptible to injury. Since these areas carry fibers responsible for the motor control and muscle tone of the legs, injury can result in spastic diplegia (ie, predominant spasticity and weakness of the legs, with or without arm involvement of a lesser degree). When larger lesions extend past the area of descending fibers from the motor cortex to involve the centrum semiovale and corona radiata, both the lower and upper extremities may be involved.
Periventricular leukomalacia is generally symmetric and thought to be due to ischemic white matter injury in the premature infant. Asymmetric injury to the periventricular white matter can result in 1 side of the body being more affected than the other. The result mimics a spastic hemiplegia but is best characterized as an asymmetric spastic diplegia. The germinal matrix capillaries in the periventricular region are particularly vulnerable to hypoxic-ischemic injury due to their location at a vascular border zone between the end zones of the striate and thalamic arteries. In addition, since they are brain capillaries, they have a high requirement for oxidative metabolism.

The following grading system for periventricular-intraventricular hemorrhages is proposed:

Grade I hemorrhage implies only subependymal bleeding (<10% of ventricular area filled with blood).

Grade II hemorrhage involves 10-50% of the ventricular area.

Grade III hemorrhage involves over 50% of the ventricular area.

Others have proposed a grade IV for the presence of parenchymal blood. This is not thought to correspond with extension of ventricular bleed. Instead, hemorrhagic infarction may be associated with periventricular-intraventricular hemorrhage.

Acute hyperbilirubin encephalopathy can result in a dyskinetic (or extrapyramidal) form of CP that can occur in either the full-term infant with marked hyperbilirubinemia or the premature infant without marked hyperbilirubinemia. Kernicterus refers to encephalopathy from hyperbilirubinemia that includes both the staining of specific nuclear groups and neuronal necrosis. These effects involve predominantly the basal ganglia, particularly the globus pallidus and subthalamic nucleus; hippocampus; substantia nigra; various cranial nerve nuclei—particularly the oculomotor, vestibular, cochlear, and facial nerve nuclei; brainstem nuclei such as the reticular formation of the pons; the inferior olivary nucleus; the cerebellar nuclei such as the dentate; and the anterior horn cells of the spinal cord.

Given the distribution of injury in kernicterus, hearing loss and movement disorders (primarily choreoathetosis or dystonia) are predominant features of hyperbilirubin encephalopathy. With improvement in early management of hyperbilirubinemia, more cases of dyskinetic (or extrapyramidal) CP are associated not with a history of hyperbilirubinemia but instead relate to presumed hypoxic injury to the basal ganglia. In the absence of hyperbilirubinemia, prematurity, or hypoxia, the possibility of a metabolic or neurodegenerative disorder as a basis for this phenotype must be considered.

Status marmoratus is the neuropathological result of a neonatal hypoxic-ischemic encephalopathy and is thought to affect term infants more than premature infants. This lesion is notable for a marbled appearance due to an abnormal myelin pattern. It involves the basal ganglia and thalamus and results in a dyskinetic CP phenotype.

The underlying brain anomaly in CP is thought to be static, whereas the motor impairment and functional consequences may vary with time. By definition, cases due to underlying disorders of a progressive or degenerative nature are excluded when diagnosing CP.

DIAGNOSIS:

DIAGNOSIS: BILATERAL HYPOXIC/ISCHEMIC BASAL GANGLIONIC NECROSIS INDUCING EXTRAPYRAMIDAL FORM OF CEREBRAL PALSY
DISCUSSION:

Computed tomography (CT) and magnetic resonance (MR) imaging have dramatically improved the ability to visualize the deep gray structures of the basal ganglia (primarily, the caudate nucleus, putamen, and globus pallidus). Any process that alters cerebral metabolism can lead to basal ganglia damage. This article presents the spectrum of disease that may be seen with bilateral basal ganglia abnormalities in the pediatric population. A simplified approach to the differential diagnosis of these entities is based on acute versus chronic conditions and radiologic manifestations. Acute processes include hypoxia, hypoglycemia, carbon monoxide poisoning, hemolytic-uremic syndrome, osmotic myelinolysis, and encephalitis. Chronic conditions include inherited (“inborn errors of metabolism,” Huntington disease, and dysmyelinating diseases) or acquired (sequelae of acute disorders) conditions that represent abnormal biochemical or structural processes within the basal ganglia. Elimination of acute causes gives little hope for improvement. Recognition of chronic disorders is important for counseling purposes, since most of these conditions have specific patterns of inheritance.

Figures 5. Normal basal ganglia. (1) Axial T2-weighted magnetic resonance (MR) image of the brain of a healthy 3-year-old child shows the caudate nucleus (C), putamen (P), and globus pallidus (G). (2) Axial T2-weighted MR image of the brain of a healthy 8-year-old child shows the characteristic MR appearance of the basal ganglia. With normal maturation, there is progressive darkening of the T2-weighted signal intensity. This phenomenon, which occurs first in the globus pallidus and later in the putamen, is thought to result from the progressive deposition of iron in these regions over time.

The basal ganglia—comprised principally of the caudate nucleus, putamen, and globus pallidus—form the core of the extrapyramidal system. The basal ganglia receive projections from almost every region of the cerebral cortex, which enables them to integrate extrapyramidal motor activity. Historically, abnormalities in movement have been attributed to diseases of the basal ganglia; however, not all basal ganglia abnormalities manifest with a characteristic movement disorder. This apparent lack of neurologic specificity is particularly true of diffuse basal ganglia diseases encountered during childhood. With the clinical history and radiologic data, however, one may limit the differential considerations. In this article, we discuss this simplified approach to bilateral basal ganglia lesions. Additionally, the normal predisposing factors for basal ganglia injury are presented.

PREDISPOSING FACTORS

Buried within each cerebral hemisphere, the basal ganglia regulate extrapyramidal motor activity.
This process is dynamic and demands chemical energy primarily in the form of adenosine triphosphate (ATP). The high energy requirement of the basal ganglia, in turn, mandates a rich blood supply and a high concentration of trace metals (1). Unfortunately, these same features make the basal ganglia vulnerable to systemic conditions both short and long term. This susceptibility for damage is especially true during childhood when the metabolic needs of the basal ganglia are greater (2).

- **Metabolism**

The metabolic requirements of the basal ganglia are attributable to their neurotransmissive role. The synaptic integration of information by the basal ganglia requires a ready supply of ATP. ATP is necessary to maintain the transmembrane ion gradients important for neuronal conduction and to regulate transmitter synthesis, release, and reuptake. Under normal conditions, ATP is efficiently produced by aerobic respiration and oxidative phosphorylation within mitochondria (1-4).

The acute deprivation of oxygen (hypoxia, carbon monoxide poisoning) or glucose (hypoglycemia) results in insufficient and inefficient production of ATP via anaerobic routes and in diffuse basal ganglia damage (5-10).

![Basal ganglia metabolism](Figure 6. Basal ganglia metabolism. Drawing shows that the production of ATP by the mitochondria requires a variety of biochemical pathways (simplified here). Most entities that preferentially affect the basal ganglia do so by altering basal ganglia metabolism. Dashed lines =...
the proposed sites of metabolic abnormality (also simplified) seen with these disorders, ADP = adenosine diphosphate, CO2 = carbon dioxide, H = hydrogen, 1-120 = water, MSUD = maple syrup urine disease, NADH = reduced nicotinamide adenine dinucleotide, O2 = oxygen, Pi = inorganic phosphate.

Similarly, long-term abnormalities in aerobic respiration (Leigh disease, “lactic acidemias,” glutaric acidemia type II) or mitochondrial structure (mitochondrial cytopathy) lead to basal ganglia injury (4, 11). Disorders that limit the processing of other energy substrates, such as amino acids and fatty acids, for use in the citric acid cycle (maple syrup urine disease, glutaric acidemia type II, propionic aciduria, methylmalonic aciduria) also result in basal ganglia damage (1, 4, 11).

The high metabolic rate of the basal ganglia rivals that of the cerebral and cerebellar cortices (1,2). By using fluorodeoxyglucose positron emission tomography, Chugani et al (2) showed the basal ganglia metabolic rate of children to be especially increased, greater than that of the adult. The additional energy demand of the basal ganglia during childhood can be attributed to that of normal development, which includes that required for myelination (10).

- **Vascularity**

The metabolic needs of the basal ganglia are matched by their marked vascularity (1). A rich vascular bed is necessary to provide nutrients and substrates for the active metabolism of the basal ganglia and to remove unwanted metabolic byproducts. Interruption of the vascular supply of the basal ganglia (strangulation, as in child abuse, or microthrombosis, as in hemolytic-uremic syndrome) results in their injury (4-9). Additionally, the vascular nature of the basal ganglia may predispose the child to an infection carried in the blood (such as encephalitis).

- **Trace Metals**

The basal ganglia house high concentrations of trace metals such as iron, copper, and manganese (1,12, 13). These trace metals, iron in particular, are important cofactors necessary for the normal metabolic activity of the basal ganglia. However, these same trace metals may also be involved in deleterious biochemical reactions (1,6, 14). Iron, for example, catalyzes the production of destructive oxygen free radicals by means of the Haber-Weiss reaction. The normally higher concentration of trace metals within the basal ganglia may accentuate their vulnerability to altered metabolism. Additionally, the toxic accumulation of trace metals such as iron (Hallervorden-Spatz disease), copper (Wilson disease), and manganese (chronic manganese intoxication) may result in destruction of the basal ganglia (1,15).

Figure 7. Normal brain perfusion. Axial tomogram from a technetium hexamethyl-propylene-amine oxime study of a healthy young child demonstrates the marked increased vascularity of the basal ganglia, which is comparable to that of the cerebellum.

The high concentrations of iron in the basal ganglia are believed to account for their characteristic MR imaging signal intensities, a feature that increases the conspicuity of basal ganglia abnormalities. Iron, more specifically iron compounds such as ferritin, is paramagnetic and thus detectable on MR images (16- 19). Iron creates local inhomogeneity within the magnetic field and dephases the spin, resulting in a signal dropout (T2* effect) that is best appreciated on T2-weighted MR images. The degree of signal loss on MR images varies with both the concentration of iron and the strength of the magnetic field of the imager. The MR imaging detection of iron has
been theorized to begin at concentrations of 10-15 mg/100 g (19).

Initially, the signal intensity of the basal ganglia approximates that of the cerebral cortex. However, with the normal increase in basal ganglia iron, which occurs with aging, there is progressive darkening of the signal intensity of the basal ganglia on MR images. At age 6 months, the globus pallidus becomes increasingly dark on T2-weighted MR images (T2* effect), a process that progresses throughout childhood (19). A similar phenomenon occurs during early adulthood in the putamen and in later adulthood in the caudate nucleus (16-19).

Table 1. Childhood Diseases of the Basal Ganglia

<table>
<thead>
<tr>
<th>Acute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoxia</td>
</tr>
<tr>
<td>Hypoglycemia</td>
</tr>
<tr>
<td>Carbon monoxide poisoning</td>
</tr>
<tr>
<td>Hemolytic-uremic syndrome</td>
</tr>
<tr>
<td>Other diseases</td>
</tr>
<tr>
<td>Osmotic myelinolysis</td>
</tr>
<tr>
<td>Encephalitis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inborn errors of metabolism</td>
</tr>
<tr>
<td>Leigh disease</td>
</tr>
<tr>
<td>MELAS</td>
</tr>
<tr>
<td>Glutaric acidemia type II</td>
</tr>
<tr>
<td>Methylmalonic acidemia</td>
</tr>
<tr>
<td>Maple syrup urine disease</td>
</tr>
<tr>
<td>Wilson disease</td>
</tr>
<tr>
<td>Degenerative diseases</td>
</tr>
<tr>
<td>Juvenile Huntington disease</td>
</tr>
<tr>
<td>Sequelae of acute insults</td>
</tr>
<tr>
<td>Basal ganglia calcification</td>
</tr>
</tbody>
</table>
- Dysmyelinating diseases
 - Canavan disease
 - Metachromatic leukodystrophy
- Other diseases
 - Neurofibromatosis type 1

Note: MELAS = mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes.

BASAL GANGLIA PATHOLOGIC PROCESSES

As with other diffuse conditions of the central nervous system, bilateral basal ganglia lesions frequently manifest with nonlocal clinical features ranging from increased irritability, lethargy, seizure, behavioral changes, or dystonia to more serious respiratory distress and coma. Occasionally, patients may manifest with a movement disorder such as chorea, which suggests a specific disease entity (Huntington disease), but this is uncommon. The abruptness of symptom onset, however, helps direct the differential diagnosis into two categories of disease (Table 1). The disorders that manifest short term usually result from iatrogenic or environmental insults. The clinical histories in these children are usually necessary to determine the specific cause. Typically, these patients are well until a precipitating event or period in time.

If acute causes are eliminated, chronic processes that may involve the basal ganglia must be considered. This second group of conditions (Table 1) represent inherent biochemical or structural abnormalities within the basal ganglia that are predominantly irreversible. Children with these conditions may also present with a wide spectrum of symptoms, albeit chronic, ranging from dramatic rigidity, gait disturbance, or chorea to relatively no symptoms. Movement disorders are more commonly seen in these patients. Furthermore, the size of the basal ganglia lesions does not necessarily correlate with the severity of the clinical findings.

Of course, substantial overlap exists between acute and chronic processes. Acute injuries may result in permanent basal ganglia damage, and chronic processes may manifest acute exacerbations or be superimposed with acute toxicities.

The following discussion is concerned with the differential clinical and radiologic features of diffuse basal ganglia abnormalities of childhood. We suggest a simplified approach to these lesions in the pediatric patient based on the clinical presentation of acute versus chronic symptoms (Table 1).

- **Acute Conditions**

The basal ganglia are prone to injury by any insult that decreases the availability of ATP. The neuronal damage results from disruption of the ATP-dependent sodium-potassium pump and the ion gradients that it regulates. The intracellular retention of sodium leads to an increase in intracellular water and cytotoxic edema. The depletion of ATP also results in the extracellular accumulation of glutamate, the main neurotransmitter of cortical nerve fibers. Glutamate is a potent excitotoxin, which, through its actions on N-methyl-D-aspartate receptors, results in the intracellular influx of calcium. The intracellular increase in calcium, in turn, initiates a series of degradative enzymatic cascades that lead to free radical formation, lipid peroxidation, and ultimately cell death. The basal ganglia, which are richly innervated by the cerebral cortex,
contain high concentrations of glutamate and a large number of N-methyl-D-aspartate receptors (4-11).

Figures 8. Hypoxia. (A) Unenhanced axial computed tomographic (CT) scan of a 4-month-old boy, obtained immediately after a witnessed episode of respiratory arrest, reveals hemorrhagic infarction of the basal ganglia and thalami on a background of diffuse cerebral edema. (B) Unenhanced axial CT scan obtained a month later demonstrates profound cystic encephalomalacia to include the basal ganglia, reflecting the severity of the hypoxic damage. Note bilateral basal ganglia calcifications. (C) Unenhanced axial CT scan of a 7-day-old full-term newborn who experienced perinatal asphyxia shows diffuse low attenuation within the basal ganglia. (D) Unenhanced axial CT scan obtained at follow-up 4 years later demonstrates atrophy of the basal ganglia, which is most dramatic in the putamina.
Figures 9. A,B Hypoxia from near drowning. Unenhanced axial CT scan of a 5-year-old boy who was found submerged in the bathtub, blue and breathless, shows symmetric areas of low attenuation in the globi pallidi. The boy was successfully resuscitated by his mother. (B) Hypoxia from child abuse (strangulation). Unenhanced axial CT scan of a toddler who ultimately died demonstrates the CT reversal sign, which refers to the pattern of diffusely decreased attenuation of the cerebral gray and white matter, with loss of the normal gray-white matter differentiation. The peripheral cerebral area of relative low attenuation accentuates the higher attenuation of the less involved central nuclei this case, the thalami. The basal ganglia are not always as involved and may retain their attenuation on CT scans; however, in this case, they appear as areas of low attenuation.

Figures 10. Carbon monoxide poisoning. (A) Unenhanced axial CT scan of a lethargic 6 year-old child whose home had a charcoal heater demonstrates low-attenuation lesions of the globi pallidi, typical with this type of toxicity. (B) Axial T2-weighted MR image of an adolescent girl who was somnolent and unresponsive from gas fumes in an enclosed garage depicts high-signal-intensity lesions in the globi pallidi and, to a lesser degree, in the caudate nuclei and putamina.

○ Hypoxia

Any process that diminishes ATP production can lead to basal ganglia damage (4-9, 11). The acute deprivation of oxygen (hypoxia) results in the redirection of glucose metabolism toward anaerobic pathways for energy production. Anaerobic respiration produces inadequate amounts of ATP and
inflicts further cellular damage by creating lactic acidosis. Lactic acidosis alters the intracellular environment and uncouples metabolic activity. Hypoxia, whether secondary to respiratory arrest, near drowning, or strangling, will result in diffuse basal ganglia injury (10,20-24). If hypoxic damage is extensive, the CT reversal sign may be seen, which has a poor prognosis and indicates irreversible brain damage (20,21).

- **Hypoglycemia**

Hypoglycemia has also been reported to have manifestations analogous to those of hypoxia (25-29). The absence of glucose, like that of oxygen, uncouples the normal cerebral metabolism. Although the mechanism for injury may be slightly different, as lactic acidosis does not occur in hypoglycemia, the final pathway of decreased ATP is similar. Hemorrhage, which may be seen with hypoxic damage, however, is rarely seen with hypoglycemic damage (26).

- **Carbon Monoxide Poisoning**

Oxygen delivery to the basal ganglia can also be reduced after carbon monoxide poisoning. The three proposed mechanisms for carbon monoxide toxicity are its (a) competitive binding to hemoglobin, decreasing the availability of oxyhemoglobin; (b) shifting of the oxyhemoglobin dissociation curve to the left, decreasing the oxygen release in tissue; and (C) direct toxicity on mitochondria through binding to cytochrome a₃ (30,31). It is interesting that carbon monoxide preferentially affects the globus pallidus but may affect the remainder of the basal ganglia and cerebral white matter. The prognosis, however, correlates more with the degree of white matter injury and not the extent of pallidal damage (30).

- **Hemolytic-Uremic Syndrome**

Oxygen (and glucose) delivery to the basal ganglia is also disrupted by vascular occlusion. Hemolytic-uremic syndrome is an uncommon multisystem disorder associated with microthrombosis of the basal ganglia. This syndrome is characterized by microangiopathic hemolytic anemia, acute renal failure, thrombocytopenia, and microthrombosis.

![Figure 11. Microthrombosis as a result of hemolytic-uremic syndrome. (A) Unenhanced axial CT scan of a 1-year-old comatose girl reveals symmetric areas of low attenuation throughout the basal ganglia and thalami. (B) Unenhanced axial CT scan obtained 6 months later demonstrates atrophy of the caudate, with cystic encephalomalacia of the putamina, globi pallidi, and thalami.](image-url)
Most patients are younger than age 5 years. Neurologic complications have been reported in 20%-50% of patients. Microthrombosis of the basal ganglia, thalami, hippocampi, and cortex may occur. Large vessel thrombi have also been reported (32).

The basic mechanism for acute cellular damage by hypoxia, hypoglycemia, carbon monoxide poisoning, and hemolytic-uremic syndrome is similar in that all result in a decreased level of ATP. The clinical features may, therefore, mimic one another. The severity of symptoms depends on the extent of exposure to the insult and ranges from mild lethargy and weakness to coma or even death. One can determine the underlying cause for the injury only by taking a careful clinical history.

- **Other Diseases**

The basal ganglia, probably because of their metabolism, are also very sensitive to electrolyte imbalances. In particular, the rapid correction of sodium can result in osmotic myelinolysis (central pontine and extrapontine myelinolysis). Typically, the central pons is affected, but the basal ganglia, thalami, and other extrapontine locations may also be involved. Isolated extrapontine myelinolysis has also been reported (33-38).

![Figure 12. Osmotic myelinolysis. Axial T2-weighted MR images of a dehydrated teenaged girl (initial sodium level, 105 mmol/dL), who was administered vigorous fluid and sodium correction therapy, reveal high-signal-intensity lesions in the pons (a, central pontine myelinolysis) and basal ganglia (b, extrapontine myelinolysis). Although her condition initially improved after rehydration, within 2 weeks, her neurologic course progressed to a pseudocoma state (“locked-in” state) (c).](image-url)
In osmotic myelinolysis, there is preferential loss of myelin with relative preservation of neurons and axons. Norenberg et al (37) postulated that the mixture of gray and white matter in the affected regions accounts for its distribution. The rapid correction of sodium in some way results in the release of myelinotoxic compounds by the gray matter components. The lack of involvement of regions consisting of predominantly white matter, such as the internal capsule, or predominantly gray matter, such as cerebral cortex in osmotic myelinolysis, supports this theory (33-38).

This entity was first reported in malnourished alcoholic adults (35) but has also been reported in children and adolescents (33,34). Neurologic manifestations include spastic quadriparesis and pseudobulbar palsy, with progression in 3-5 days to pseudocoma (locked-in syndrome). Although death is a common feature, survival beyond 6 months can be seen in up to 10%. If recovery from osmotic myelinolysis occurs, the extrapontine lesions resolve first (33). When osmotic myelinolysis occurs and the patient dies, it is from a secondary complicating illness, usually respiratory (34-38).

Diffuse cerebral encephalitis results when organisms, usually viral agents, overwhelm the host defenses. The richly vascularized basal ganglia, with their end-vessel vascular supply, are prone to infections carried in the blood. Patients typically present with headache, lethargy, vomiting, anorexia, and seizure. Fever may or may not be present. The basal ganglia may be involved with transient findings. However, encephalitis may also result in vascular compromise, hypoxic damage, and subsequent hemorrhagic infarction (39-41).
hyperintense basal ganglia lesions. After administration of acyclovir, the child fully recovered. (B) Axial T2-weighted MR image obtained 1 week later demonstrates almost complete resolution of the basal ganglia lesions. (C) Unenhanced axial CT scan of a 1-year-old child with fever, who, according to a measurement of cerebrospinal fluid viral titers was found to have eastern equine encephalitis, reveals symmetric hemorrhagic infarction of the caudate nuclei and putamina. (D) Subsequent unenhanced axial CT scan obtained 2 weeks later shows progression of the condition.

Methanol (42), cyanide (43), and hydrogen sulfide (44) poisoning have also been reported to preferentially affect the basal ganglia in adults, but their occurrence in children is rare.

Figure 14. Leigh disease. T2-weighted MR images of an 18-month-old boy with developmental delay and lactic acidosis reveal symmetric involvement of the caudate nuclei and putamina (a) and the tegmentum (b, arrow).

- Chronic Conditions

Inherited or acquired (sequelae of acute disorders) conditions may result in long-term abnormalities of the basal ganglia. These diseases represent inherently abnormal biochemical or structural processes within the basal ganglia. Thus, the elimination of acute causes of basal ganglia abnormality suggests little hope for clinical improvement. Recognition of these chronic disorders is important for counseling purposes because most have specific patterns of inheritance.

- Inborn Errors of Metabolism

Leigh disease (subacute necrotizing encephalomyelopathy) is the prototypic metabolic disease that involves the basal ganglia. Leigh disease is an autosomal recessive biochemical disorder characterized by deficiencies in pyruvate carboxylase, pyruvate dehydrogenase complex, or cytochrome C oxidase. These enzyme deficiencies result in abnormal pyruvate metabolism with redirection of ATP production to anaerobic mechanisms. Children with Leigh disease have lactic acidosis with elevated cerebrospinal fluid and serum lactate to pyruvate ratios. Patients are typically healthy at birth but develop progressive spasticity and dystonia with episodic neurologic and respiratory exacerbations. Leigh disease has a propensity to involve the putamina but may also affect the other basal ganglia as well as the thalami, brain stem, and, less commonly, white matter (11, 15, 45-47).

A number of other enzyme deficiencies or mitochondrial defects—probably, a variation of Leigh disease—can also lead to abnormal pyruvate metabolism and lactic acidosis with basal ganglia manifestations, particularly in the globi pallidi. These disorders, including Leigh disease, are part of a broader category—the lactic acidemias (11).
The mitochondrial cytopathies represent a peculiar subset of the lactic acidemias, typified by structurally abnormal mitochondria that are identified as "ragged red" fibers in a muscle biopsy specimen. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes; mitochondrial encephalopathy with ragged red fibers; and Kearns-Sayre syndrome are the three clinical forms of mitochondrial cytopathy (48-50). Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes make up a distinct syndrome that commonly affects the basal ganglia. This syndrome is characterized by normal early development, short stature, lactic acidosis, seizures, and stroke. Infarction of the basal ganglia and cortical regions is a hallmark radiologic feature of the syndrome. Cortical infarction predominantly occurs in the parietal and occipital regions and results in blindness. The basal ganglia infarctions commonly calcify (47-50).

Figures 15. (A) Leigh disease. Axial T2-weighted MR image of a 7-year-old child with a long history of seizure, developmental delay, lactic acidosis, and dystonia reveals abnormal hyperintense signal intensity in the basal ganglia, thalami, and subcortical white matter. (B) Lactic acidemia. T2-weighted MR image of a 7-month-old infant with developmental delay reveals a diffusely abnormal pattern of myelination and mildly high-signal-intensity lesions of the globi pallidi (arrow). (C,D) Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Unenhanced axial CT scans of a 6-year-old girl with a long history of mental retardation, lactic acidosis, ataxia, and recurrent stroke-like episodes reveal calcified basal ganglia infarcts (C) and extensive cerebral atrophy secondary to previous infarctions of the parietal, occipital, and frontal lobes (D).
Figures 16. (A) Glutaric acidemia type II. Axial T2-weighted MR images of a 2-year-old child with developmental delay, acidosis, and a sweaty feet odor show subtle bilateral globi pallidi hyperintensity (a, arrow) and more apparent abnormal hyperintense white matter (B). (C) Methylmalonic acidemia. Axial T2-weighted MR image of a 16-year-old boy with a broad-based gait and a history of seizure activity since birth shows symmetric high signal-intensity lesions of the globi pallidi. During the first week of life, he presented with lethargy, poor feeding, and seizures. Biochemical analysis was used to make the diagnosis.

Pyruvate is not the only energy substrate used by the mitochondria for ATP production. Amino acids and fatty acids are also funneled into the citric acid cycle after enzymatic degradation. A host of other metabolic conditions (glutaric acidemia type II, methylmalonic acidemia, propionic acidemia, and maple syrup urine disease) may alter the catabolism of fatty acids or amino acids. Disruption of these alternate routes for energy substrate may also result in basal ganglia injury.

Glutaric acidemia type II (multiple acyl coenzyme A [CoA] dehydrogenase deficiency) is an autosomal recessive disorder that typically manifests during childhood with a glutaric acidemia. These patients have an abnormality in flavoprotein, which is necessary for oxidative phosphorylation and for fatty acid catabolism. Pathologically, this disorder is characterized by fatty degeneration of the liver, cardiomyopathy, and renal dysplasia. Clinically, patients are hypotonic and have a characteristic “sweaty feet” odor. Lesions of the globus pallidus and the white matter may be seen (11).
Figure 17. Maple syrup urine disease. (A) Unenhanced axial CT scan of a child with recurrent episodes of metabolic acidosis and lethargy since the 8th day of life reveals low attenuation within the globi pallidi (arrow) and possibly the thalami, with small ventricles suggesting generalized edema. The scan was obtained when the child was 5 months old and was experiencing an acute episode. (B) Axial T2-weighted MR image of the same child, obtained at age 17 months, reveals moderate hyperintensity of the globi pallidi.

Propionyl CoA and methylmalonyl CoA are important intermediaries in the catabolism of several essential amino (isoleucine, valine, methionine, threonine, thymine) and fatty acids. Deficiencies in propionyl-CoA carboxylase or methylmalonyl-CoA mutase result in propionic and methylmalonic acidemia, respectively. Patients present with ketoacidosis, hypotonia, developmental delay, dehydration, seizure, and lethargy. Basal ganglia injury, although more commonly seen in methylmaionic acidemia, may occur with either disease (11,15,47).

Maple syrup urine disease results from several inherited defects in branched-chain keto acid dehydrogenase. Patients are unable to catabolize branched-chain amino acids (leucine, isoleucine, and valine), which therefore are increased in their blood and urine. The urine has a characteristic smell for which the disorder was named. The primary therapy is a protein-restricted diet. The main radiologic feature is diffuse edema, especially of the cerebellar white matter, dorsal brain stem, cerebral peduncles, and dorsal limb of the internal capsule. Basal ganglia and thalamic involvement may also be seen (11, 47,51).

As mentioned earlier, the basal ganglia have high trace metal concentrations that may be toxic if excessive. Wilson disease is an autosomal recessive disorder of copper metabolism characterized by the increased deposition of copper in the brain and liver. The toxic accumulation of copper leads to cell damage in both the liver and lentiform nuclei (the lenticular nucleus comprises the putamen and globus pallidus, which are apposed in a “lens” configuration), giving it the pathologic name of "hepatolenticular degeneration". Laboratory tests reveal decreased levels of total Serum copper and ceruloplasmin and increased urinary copper excretion. Symptoms referable to liver failure usually predate neurologic symptoms. Liver biopsy will help confirm the diagnosis. Treatment consists primarily of copper chelation with penicillamine. Lesions of the basal ganglia, thalami, and occasionally the periaqueductal gray matter are seen. The distribution of Wilson disease may mimic that of Leigh disease (52-54).
Figure 18. Wilson disease. Axial T2-weighted MR images of a 14-year-old adolescent with slowly progressing dysphagia, dysphonia, dysarthria, and tremor reveal bilateral symmetric lesions of the caudate nuclei and putamina (A) and the periaqueductal region (B, arrow) in association with mild cerebral atrophy. Findings from a liver biopsy that was performed when the child was 7 years old were used for diagnosis.

Figure 19. Juvenile Huntington disease. Unenhanced axial CT scan of a 7-year-old boy with rigidity, mental retardation, dyslalia, seizures, and choreiform movements that have been progressive over the past 3 years reveals marked atrophy of the basal ganglia, most dramatically in the caudate nuclei.

- Degenerative Diseases

Huntington disease is the classic degenerative disease of the basal ganglia. Recent studies, however, have linked Huntington disease to abnormalities in oxidative phosphorylation and glutamate regulation, suggesting that it represents an inborn error of metabolism (55-57).

In any case, Huntington disease is an autosomal dominant disorder; it may manifest during childhood or adolescence. The patients typically present with rigidity, dyslalia, seizures, and mental deterioration. Chorea is usually present but is more commonly a late feature. Pathologically, there is diffuse cerebral atrophy, particularly of the caudate and putamen (11,15,58,59).

Acute insults to the basal ganglia may be sufficiently extensive to cause irreversible damage that
can be detected radiologically. Although cystic encephalomalacia may be seen, more commonly dystrophic calcification is present. Calcification is probably the most common abnormality of the basal ganglia seen in children, with a reported prevalence of 1.1%-1.6% (60, 61). Although basal ganglia calcification may be normal and inconsequential in adults, this finding in a child is important and serves as a marker of more extensive brain damage (60). Unfortunately, basal ganglia calcifications are not specific for any given disease and can be associated with a number of conditions (Table 2) (60-63).

Table 2. **Condition associated with basal ganglionic calcification**

<table>
<thead>
<tr>
<th>Condition associated with basal ganglionic calcification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocrine</td>
</tr>
<tr>
<td>• Hypoparathyroidism</td>
</tr>
<tr>
<td>• Pseudohypoparathyroidism</td>
</tr>
<tr>
<td>• Pseudopseudohypoparathyroidism</td>
</tr>
<tr>
<td>• Hyperparathyroidism</td>
</tr>
<tr>
<td>• Hypothyroidism</td>
</tr>
<tr>
<td>Metabolic</td>
</tr>
<tr>
<td>• Leigh disease</td>
</tr>
<tr>
<td>• Mitochondrial cytopathy</td>
</tr>
<tr>
<td>• Fahr disease (familial cerebrovascular ferro-caicinosis)</td>
</tr>
<tr>
<td>Congenital or developmental</td>
</tr>
<tr>
<td>• Familial idiopathic symmetric basal ganglia</td>
</tr>
<tr>
<td>• Hastings-James syndrome</td>
</tr>
<tr>
<td>• Lipoid proteinosis (hyalnosis cutis)</td>
</tr>
<tr>
<td>• Neurofibromatosis</td>
</tr>
<tr>
<td>• Tuberous sclerosis</td>
</tr>
<tr>
<td>• Oculocraniosomatic disease</td>
</tr>
<tr>
<td>• Methemoglobinopathy</td>
</tr>
<tr>
<td>• Down syndrome</td>
</tr>
<tr>
<td>• Cockayne syndrome</td>
</tr>
<tr>
<td>Inflammatory</td>
</tr>
</tbody>
</table>

- Toxoplasmosis
- Congenital rubella
- Cytomegalovirus
- Measles
- Chicken pox
- Pertussis
- Coxsackie B virus
- Cysticercosis
- Systemic lupus erythematosus
- Acquired immunodeficiency syndrome

Toxic
- Hypoxia
- Cardiovascular event
- Carbon monoxide intoxication
- Lead intoxication
- Radiation therapy
- Methotrexate therapy
- Nephrotic syndrome
Figures 20. Basal ganglia calcification. Unenhanced axial CT scans reveal calcifications in a case of congenital cytomegalovirus in a 7-month-old infant (A), congenital acquired immunodeficiency syndrome in a 13-month-old child (B), systemic lupus erythematosus in a 15-year-old adolescent (C), and congenital nephrotic syndrome in a 2-month-old infant (D).

Basal ganglia calcification, although best evaluated with CT, may be seen with MR imaging. The MR imaging appearance of basal ganglia calcification consists most commonly of hypointensities on T1- and T2-weighted images. Calcium has nonmobile protons that result in signal void that is more apparent on T2-weighted MR images. Occasionally, calcifications may appear hyperintense on T1-weighted MR images and hypointense on T2-weighted images. The T1 shortening in these cases is believed to be related to a variation in the crystalline structure of the calcifications (64).

Figure 21. Basal ganglia calcification. (A) Unenhanced axial CT scan of a patient who developed mineralizing microangiopathy after radiation therapy and intrathecal chemotherapy for a
medulloblastoma shows calcification. Axial T1-weighted (B) and T2-weighted (C) MR images show the calcification as hyperintense and hypointense, respectively.

- **Dysmyelinating Diseases**

Although generally considered gray matter nuclei, the basal ganglia are a mixture of gray and white matter elements that collectively contribute to the MR signal intensity of the basal ganglia. Abnormalities of white matter elements may also result in abnormal MR imaging signal intensity in the basal ganglia. It is important to note that basal ganglia lesions may result from diseases unrelated to oxidative phosphorylation.

Under normal circumstances, the signal intensity contributions of the myelin are dwarfed by those of the neuronal elements, as the MR imaging appearance of the basal ganglia parrots that of the peripheral gray matter. Under pathologic conditions, however, the abnormal myelin may alter the MR imaging signal intensity characteristics of the basal ganglia. Osmotic myelinolysis is an example of such an acute condition. Chronic diseases of myelination (Canavan disease, metachromatic leukodystrophy) may also affect the appearance of basal ganglia. These abnormalities of myelin are best appreciated as regions of abnormal hyperintensity on T2-weighted images. Although the white matter changes are the dominant radiologic feature of these disorders, the involvement of the myelin elements of the basal ganglia is important to recognize and not to be misconstrued as a second process.

Canavan disease (spongiform leukodystrophy) is an autosomal recessive disorder of infancy with higher frequency in Ashkenazi Jews. Patients usually present during the first year of life with megalencephaly, hypotonia, and failure to thrive. Seizures, spasticity, and blindness may follow, with death occurring usually by the age of 5 years. The disease diffusely involves the white matter but may also affect the basal ganglia (15,65,66).

Metachromatic leukodystrophy is an autosomal recessive dysmyelinating disorder that can manifest in infancy or adulthood. It is characterized by gait disorder, tremor, and strabismus early, with progressive intellectual decline. The disease results from a deficiency in arylsulfatase A, an enzyme that is crucial to normal myelination. MR imaging reveals abnormally lengthened T2 signal intensity in the white matter tracts and occasionally in the basal ganglia (15,66).

- **Other diseases.**

Unidentified bright objects may occur in the basal ganglia of patients with neurofibromatosis type 1, an autosomal dominant disorder with a high rate of spontaneous mutation and a reported prevalence of one in 2,000-4,000 births. It has been genetically linked to the long arm of chromosome 17. Clinical hallmarks of neurofibromatosis type 1 include multiple neurofibromas, cafe-au-lait spots, Lisch nodules (pigmented iris hamartomas), axillary freckles, macrocephaly, and learning disorders. However, most of these clinical features are absent during early childhood (67-72).
Figures 22. (A) Canavan disease. (a) Unenhanced axial CT scan of a 3-month-old infant suggests low-attenuation lesions of the globi pallidi (arrow). (B) T2-weighted MR image of the same child, obtained at age 2 years, shows diffuse, abnormal high signal intensity of the white matter and of the globi pallidi. A fibroblastic culture was used for diagnosis in this child, who has had decreased vision, developmental delay, and seizures since age 6 months. (C) Metachromatic leukodystrophy. Axial T2-weighted MR image of a 3-year-old child with developmental delay, microcephaly, spastic diplegia, and hypotonia, who was found to have deficient arylsulfatase A activity, reveals diffuse white matter hyperintensity and abnormal high signal intensity in the globi pallidi (arrow).

Because of the lack of apparent pathologic abnormality in the unidentified bright objects, these lesions have been called hamartomas. However, they have also been reported to resolve (70,71). We suggest calling them dysmyelinating lesions, as true hamartomas should remain unchanged. T2-weighted MR imaging of up to 70%-80% of asymptomatic children with neurofibromatosis type 1 reveals these hyperintense central nervous system lesions (personal observations, 1992) in the basal ganglia, most commonly in the globus pallidus, brain stem, thalamus, and cerebellar white matter. It is interesting that these lesions may also appear hyperintense on T1-weighted MR imaging (72). Contrast material-enhancement of these lesions should raise suspicion for malignancy, specifically for astrocytoma, which is associated with neurofibromatosis type 1. Although less helpful, CT scans may occasionally depict these dysmyelinating lesions.
Figures 23. Neurofibromatosis type 1 dysmyelinating lesions. (31) Axial T1-weighted (a) and T2-weighted (b) MR images of an 8-year-old girl show hyperintense basal ganglia abnormalities. Clinically, the findings from neurologic examination were normal. (32) Axial T2-weighted MR image of a 5-year-old boy with normal findings from neurologic examination shows hyperintense lesions in the brain stem. He had similar lesions in the basal ganglia.

Figure 24. Neurofibromatosis type 1 dysmyelinating lesions. Unenhanced axial CT scan of a 6-year-old girl shows low-attenuation lesions in the globi pallidi.
SUMMARY

Findings of bilateral basal ganglia lesions in a child are always significant. Acute processes that affect the basal ganglia can have similar distributions (Table 3). Usually, only after taking a thorough history can one identify the insulating agent or cause. The radiologic appearance may be supportive of the diagnosis, however. Carbon monoxide, for example, has the propensity to affect the globus pallidus. Osmotic myelinolysis, although it may occur in purely extrapontine locations, commonly has an associated central pontine lesion.

If acute causes are eliminated, chronic processes must be considered. With these entities, the prognosis is poor, as they are invariably progressive and the damage is irreversible. The identification of the specific disease has important counseling implications, since hereditary factors are involved with most of these disorders. The general distributions are summarized in Table 3.

In Leigh disease, the lesions occur predominantly in the putamen but may also affect the caudate, globus pallidus, thalamus, brain stem, and white matter. Wilson disease may mimic Leigh disease radiologically. The clinical differentiation of Wilson disease from Leigh disease, however, should be apparent. Wilson disease usually has associated hepatic dysfunction; Leigh disease does not. The remainder of the inborn errors of metabolism primarily affect the globus pallidus, and their differentiation is based on biochemical testing.

Huntington disease is an uncommon childhood disorder that is usually only considered when a family history of the disorder is elicited. Patients with juvenile Huntington disease present more commonly with rigidity, dyslalia, mental deterioration, and seizure, but eventually most develop the more typical choreoathetoid movement disorder.

It is also important to recognize the presence of white matter elements in the basal ganglia. Both acute and chronic white matter disorders may result in basal ganglia abnormalities. Neurofibromatosis type 1 is possibly one such entity.

Table 3. Anatomic Distribution of Acute and Chronic Basal Ganglia Diseases

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Pallidus</th>
<th>Caudate</th>
<th>Putamen</th>
<th>White matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoxia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carbon monoxide intoxication</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hemolytic-uremic syndrome</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Osmotic myelinolysis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++pons</td>
</tr>
<tr>
<td>Encephalitis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Note-Regions more commonly involved are indicated by + +.

Addendum

- A new version of this PDF file (with a new case) is uploaded in my web site every week (every Saturday and remains available till Friday.)
- To download the current version follow the link "http://pdf.yassermetwally.com/case.pdf".
- You can also download the current version from my web site at "http://yassermetwally.com".
- To download the software version of the publication (crow.exe) follow the link: http://neurology.yassermetwally.com/crow.zip
- The case is also presented as a short case in PDF format, to download the short case follow the link: http://pdf.yassermetwally.com/short.pdf
- At the end of each year, all the publications are compiled on a single CD-ROM, please contact the author to know more details.
- Screen resolution is better set at 1024*768 pixel screen area for optimum display.
- For an archive of the previously reported cases go to www.yassermetwally.net, then under pages in the right panel, scroll down and click on the text entry "downloadable case records in PDF format"
- Also to view a list of the previously published case records follow the following link (http://wordpress.com/tag/case-record/) or click on it if it appears as a link in your PDF reader

References

4. Siegel GJ, Agranoff BW, Albers RW, Molinoff PB, eds. Basic neurochemistry: molecular,

56. Parker WD, Boyson SJ, Luder AS, Parks JK. Evidence for a defect in NADH:ubiquinone

73. Metwally, MYM: Textbook of neuroimaging, A CD-ROM publication, (Metwally, MYM editor) WEB-CD agency for electronic publication, version 10.1a January 2009